Quadrennial Energy Review Second Installment

Transforming the Nation's Electricity System

February 15, Washington DC

QUADRENNIAL ENERGY REVIEW | Second Installment QER Scope and Context

U.S. GDP and Electricity Demand Growth Rates, 1950–2040

- With some of the lowest electricity prices in the developed world, the U.S. electricity sector supports the economic competitiveness of U.S. goods and services in both domestic and global markets.
- Almost all economic sectors now rely, in varying degrees, on highly interconnected, datadriven, and electricitydependent systems to manage operations and provide services.
- Three electricity-reliant areas of the economy—online talent platforms, big-data analytics, and the Internet of Things could increase GDP by as much as \$2.2 trillion in 2025.

Source: Energy Information Administration, 2016

U.S. Electricity Demand: Slow Demand Growth

Slowing electricity demand growth is driven by energy efficiency, economic structure, demographics, and market saturation of major electric appliances.

QUADRENNIAL ENERGY REVIEW | Second Installment National Goal: Environmental Responsibility

- The electricity system is the largest source of air emissions impacting public health; it is also one of the largest users of fresh water and the principal source of radioactive waste.
- The electricity system will likely play a significant role in the decarbonization of other sectors of the U.S. economy as electrification of transportation, heating, cooling, and industrial applications continues.

Global CO₂ Emissions and Probabilistic Temperature Outcomes

QUADRENNIAL ENERGY REVIEW | Second Installment

National Security and Lifeline Network Interdependencies

Mirai Botnet Attack – October 21, 2016

"Assuring that we have reliable, accessible, sustainable, and affordable electric power is a national security imperative. Our increased reliance on electric power in every sector of our lives, including communications, commerce, transportation, health and emergency services, in addition to homeland and national defense, means that large-scale disruptions of electrical power will have immediate costs to our economy and can place our security at risk. Whether it is the ability of first responders to answer the call to emergencies here in the United States, or the readiness and capability of our military service members to operate effectively in the U.S. or deployed in theater, these missions are directly linked to assured domestic electric power."

- Center for Naval Analysis, 2015

Policy Drives Generation Capacity Additions

Additions (GW) by Fuel Type, 1950-2015

About 43 GW of capacity currently under construction in the United States (as of May 2016)

QUADRENNIAL ENERGY REVIEW Second Installment 70 Million Installed Smart Meters

- Utilities' motives for
 implementing enabling
 technologies prioritize
 immediate benefits to
 operations; reliability,
 efficiency, and cost
 reduction. Customer
 empowerment, outage
 recovery, demand
 management, and safety
 trail behind.
- Technological immaturity and lack of funds are the two leading causes for resistance to adopting advanced technology.

Obstacles to Smart Grid Technology Adoption

Demand Response Capacity by Region/Sector

NERC Region	Total DR Capacity (MW)	Residential	Commercial	Industrial	Transportation	
АК	27	19.0%	48.0%	33.0%	0.0%	
FRCC	1,924	42.0%	39.0%	19.0%	0.0%	
н	35	57.0%	43.0%	0.0%	0.0%	
MRO	4,264	44.0%	19.0%	37.0%	0.0%	
NPCC	467	8.0%	55.0%	34.0%	3.0%	
RFC	5,362	29.0%	13.0%	58.0%	0.0%	
SERC	8,254	16.0%	10.0%	74.0%	0.0%	
SPP	1,594	13.0%	20.0%	66.0%	0.0%	
TRE	459	19.0%	74.0%	7.0%	0.0%	
WECC	4,681	22.0%	24.0%	50.0%	3.0%	
Unspecified	28	100.0%	0.0%	0.0%	0.0%	
Totals	27,095	25.8%	18.9%	54.6%	0.6%	

"Electric Power Sales, Revenue, and Energy Efficiency Form EIA-861 Detailed Data Files," EIA-861 Demand_Response_2013 and Utility_Data_2013 data files, EIA, accessed October 20, 2015; FERC (Federal Energy Regulatory Commission). *Assessment of Demand Response* & Advanced Metering Staff Report. Washington, D.C., 2015. <u>https://www.ferc.gov/legal/staff-reports/2015/demand-response.pdf</u>.

IoT: By 2020 50 Billion Devices, All Rely on Electricity

Electricity Generation, Total TWh Net Electricity Consumption, TWh Connected Devices

SCADA Communications

Evolving Requirements for System Operations

Findings

- The widespread integration of VERs at both utility scale and distributed across all consumer segments significantly expands the time dimensions in which grid operators must function and complicates operations.
- Dispatch effectiveness will require the integration of automated grid management with continuing human oversight as well as an increase in the granularity, speed, and sophistication of operator analytics.

System Reliability Depends on Managing Multiple Event Speeds

When the grid goes down, data centers face significant risks as backup power does not always work. The key is to try to minimize the likelihood of grid power outages. Local power grid reliability should be a factor considered when choosing data center locations.

Guadrennial energy review | Second Installment Two Way Flows of Electricity: Value Creation, Consumer Choice, Complex Grid Operations, Visibility Needs, Cyber Security

QUADRENNIAL ENERGY REVIEW | Second Installment **Evolving Cyber Threats**

Findings

- Mitigation and response to cyber threats are hampered by fragmented information-sharing among utilities and with government, the lack of security-specific technological and workforce resources, and challenges associated with the need for multijurisdictional responses to threats and consequences.
- Key vulnerabilities include unpatched networks, un-vetted vendor access, access to the public Internet, and insider threats.

Many Forms

- Drive-by vs. sustained focus
- Every point is an entry point
- "Callback dropper" embedded empty vessel that pings the attacker ready to accept malware
- Botnets networks of infected computers or zombie computers; force multipliers of the Dark Net
- Pre-positioned assets, like nukes, in an all-out cyber war (sleeper cells)

System Incursion

Individual Actors

Incursion Marketplace

- Denial of service
- Operational disruption
- Identity theft
- Ransoms
- Intelligence gathering
- Zero-day research that is sold to others

Incursion Objectives

Hack Characteristics

- Average time to detection is 188 days
- Ransom attacks on the rise
- In the long run, the chance of survival drops to zero
- Use of cyber firing ranges (where simulations are run)

Defense Challenges

17

 Piggy backing/use of Trojan horses to deliver payloads

Intelligence

Current Jurisdictional Boundaries and Electricity as a National Security Concern

Electricity Workforce Hiring Needs

- Electric Power and Fuels Transmission, Wholesale Trade and Distribution, and Storage
- Energy Efficiency

Over half of employers in the Mid-Atlantic region report very high difficulty hiring in the electric power and fuels transmission, wholesale trade and distribution, and storage subsector, while no more than 32 percent of employers in other regions reported hiring difficulty in this field. The Mid-Atlantic also reports among the highest rates of difficulty hiring in the energy efficiency and electric power generation and fuels industries.

QUADRENNIAL ENERGY REVIEW Second Installment North American Electricity Integration

U.S. Electricity Trade with Canada in Four Regions

Source: Energy Information Administration, 2015

Electricity Flows between the U.S. and Mexico

Monthly Trade in Megawatt-Hours

Findings

- Trade has been increasing across the North American bulk power system, but crossborder flows, especially between Canada and the United States, are now using the full capacity of existing transmission infrastructure.
- U.S.-Canada cross-border electricity trade and coordination of operations, policy, and regulatory planning are extensive, mature, and efficient, as evidenced by the December 2016 Joint U.S.-Canada Electric Grid Security and Resilience Strategy.
- One model for power-sector collaboration across national borders is demonstrated by the reliability planning under NERC, but this engagement has been limited to Canada, the U.S., and the Baja California region of Mexico. Notably, Mexico's ongoing electricity reform could have significant impacts on the future of cross-border integration.

QUADRENNIAL ENERGY REVIEW Second Installment

Electricity System Governance Issues

- The analysis conducted for QER 1.2 identified *integrated objectives* that address the needs and challenges to enable the electricity sector of the 21st century.
- Recommendations will provide the incremental building blocks for longerterm, planned changes and activities, undertaken in conjunction with state and local governments, policy-makers, industry and other stakeholders.

QER 1.2 Proposes 76 Recommendations in Six Focus Areas

Key Crosscutting National Security and Reliability Priorities	Increasing Economic Value & Consumer Equity	Enabling Clean Electricity Future		
Electricity System Reliability, Security, and Resilience	Electricity Workforce	Enhancing Electricity Integration in North America		

Protect the Electricity System as a National Security Asset.

Amend the Federal Power Act to:

- Clarify and affirm DOE's authority under the FAST Act to develop preparation and response capabilities that will ensure it is able to issue a grid-security emergency order to protect critical electric infrastructure from cyber attacks, physical incidents, EMPs, or geomagnetic storms. In this regard, DOE's authority should include the ability to address two-way flows that create vulnerabilities across the entire system; and
- Authorize FERC to propose new reliability standards and to modify NERC-proposed reliability standards if FERC finds that expeditious action is needed to protect national security in the face of fast-developing new threats to the grid.
- Collect information on security events to inform the President about emergency actions and imminent dangers.
- Adopt integrated electricity security planning and standards on a regional basis.
- Assess natural gas/electricity system infrastructure interdependencies for cybersecurity protections.

Increase Financing Options for Grid Modernization

Expand DOE's loan guarantee program and make it more flexible to assist in deployment of innovative grid technologies and systems.

Increase technology demonstrations and utility/investor confidence.

Significantly expand existing programs to demonstrate the integration and optimization of distribution system technologies.

Build Capacity at the Federal, State, and Local Levels.

- Provide funding assistance to enhance capabilities in state public utility commissions and improve access to training and expertise for small and municipal utilities.
- Create a center for Advanced Electric Power System Economics to provide social science advice and economic analysis on an increasingly transactive and dynamic 21st century electricity system.

Inform Electricity System Governance in a Rapidly Changing Environment.

Establish a Federal Advisory Committee on alignment of responsibilities for rates and resource adequacy.

QUADRENNIAL ENERGY REVIEW Second Installment **QER 1.2 Recommendations**

Source: Department of Energy, 2016

Strengthen rural electricity and \geq broadband infrastructure.

QUADRENNIAL ENERGY REVIEW | Second Installment **QER 1.2 Recommendations**

1.000

- Stretch Tech
- Advanced Tech, CP10
- Stretch Tech, CP10

QUADRENNIAL ENERGY REVIEW | Second Installment **QER 1.2 Recommendations**

Key Crosscutting Priorities	Reliability, Security, Resilience		
Economic Value & Consumer Equity	Electricity Workforce		
Clean Electricity Future	North American Integration		

Select Recommendations

- Support industry, state, local, and Federal efforts to enhance grid security and resilience.
- Improve data on all-hazard events and losses as well as EIA's data, modeling, and analysis capabilities.
- Encourage cost-effective use of advanced technologies that improve transmission operations.

Levels of Risk Low Moderate High Unknown	Current Status of Risk Management Practice Nascent: Critical Vulnerabilities Exist Established, but opportunities for improvement remain Well-established and robust
	Levels of Risk Low Moderate High Unknown

		System Components					
Threat	Intensity	Electricity Transmission	Electricity Generation	Electricity Substations	Electricity Distribution (above)	Electricity Distribution (below)	Storage
Assessment of Risk & Resilience							
Natural	/Environm	ental Thre	eats				
Hurricane	"Low (<category 3)"<="" th=""><th>•</th><th>٠</th><th>•</th><th>•</th><th>•</th><th>•</th></category>	•	٠	•	•	•	•
	"High (>Category 3)"	•	•	•	•	•	•
Drought	"Low (PDSI>-3)"	•	٠	•	•	٠	٠
	"High (PDSI<-3)"	•	0	٠	٠	•	0
Winter Storms/Ice/ Snow	"High (PDSI<-3)"	•	٠	٠	•	•	•
	"Low (Minor icing/snow)"	•	•	•	•	•	•
Extreme Heat/Heat Wave		•	•	•	•	•	٠
Flood	"Low (<1:10 year ARI)"	•	•	٠	•	•	•
	"High (>1:100 year ARI)"	•	0	0	0	•	•
	"Low (>Type III IMT)"	٠	•	٠	•	•	•
whathe	High (Type IMT)	•	•	•	•	•	•
Sea-l	evel rise	•	•	٠	•	•	•
	Low (<5.0)	٠	•	•	•	•	•
Earthquake	High (>7.0)	•	•	•	•	•	•
Geomag-	"Low (G1-G2)"	•	•	٠	٠	•	•
netic	"High (G5)"	0	•	0	•	0	•
Wildlife/	Wildlife/Vegetation		٠	٠	•	•	•
Human	Threats						
Physical	Low	•	•	•	•	•	•
	High	•	•	0	•	•	
Cyber	Low	•	0	0	0	0	
	High	0	0	0	0	0	0
Electromag- netic	"Low (Ambient EMI)"	٠	٠	٠	٠	•	٠
	"High (NEMP & HEMP)"	٠	0	0	•	•	0
Equipment Failure		•	•	٠	٠	•	•
Combined Threats		0	0	0	0	0	0

QUADRENNIAL ENERGY REVIEW | Second Installment QER 1.2 Recommendations

Key Crosscutting Priorities

Economic Value & Consumer Equity

Clean Electricity Future

Reliability, Security, Resilience

Electricity Workforce

North American Integration

Select Recommendations

- Increase North American cooperation on electric grid security and resilience, including U.S. and Mexican cooperation on reliability and the U.S.-Canadian Grid Security Strategy and domestic Action Plans.
- Promote permitting of cross-border transmission facilities and modernize international cross-border transmission permitting processes.
- Increase North American clean energy and technical coordination to more deeply coordinate on clean energy and climate goals.

Border Crossings of Electric Transmission Lines

Source: Energy Information Administration, 2016